239 research outputs found

    Design issues for general-purpose adaptive hypermedia systems

    Get PDF

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    MOT meets AHA!

    Get PDF
    MOT (My Online Teacher) is an adaptive hypermedia system (AHS) web-authoring environment. MOT is now being further developed according to the LAOS five-layer adaptation model for adaptive hypermedia and adaptive web-material, containing a domain -, goal -, user -, adaptation – and presentation model. The adaptation itself follows the LAG three-layer granularity structure, figuring direct adaptation techniques and rules, an adaptation language and adaptation strategies. In this paper we shortly describe the theoretical basis of MOT, i.e., LAOS and LAG, and then give some information about the current state of MOT. The purpose of this paper is to show how we plan the design and development of MOT and the well-known system AHA! (Adaptive Hypermedia Architecture), developed at the Technical University of Eindhoven since 1996. We aim especially at the integration with AHA! 2.0. Although AHA! 2.0 represents a progress when compared to the previous versions, a lot of adaptive features that are described by the LAOS and the adaptation granulation model and that are being implemented into MOT are not yet (directly) available. So therefore AHA! can benefit from MOT. On the other hand, AHA! offers a running platform for the adaptation engine, which can benefit MOT in return

    Adaptive applications to assist students with autism in succeeding in higher education

    Get PDF
    Abstract. In this demo we discuss a few possible scenarios showing adaptation of presentation and information to assist autistic students in succeeding in higher education. These students not only have specific information need, they are also more concerned about their privacy. We use WiBAF (Within Browser Adaptation Framework) for user modeling and adaptation to give users control over the sharing of their data

    WiBAF into a CMS: Personalization in Learning Environments Made Easy

    Get PDF
    ABSTRACT Adaptivity has proven successful in reducing navigation and comprehension problems in hypermedia documents. Authoring of adaptive hypermedia documents and especially of the adaptivity in these documents has been problematic or at least labour intensive throughout AH history. This paper shows how the integration of a CMS with an adaptive framework greatly simplifies the inclusion of personalization in existing educational applications. It does this within the context of European project Autism&Uni that uses adaptive hypermedia to offer information for students transitioning from high school to university, especially to cater for students on the autism spectrum as well as for non-autistic students. The use of our Within Browser adaptation framework (WiBAF) reduces privacy concerns because the user model is stored on the end-user's machine, and eliminates performance issues that currently prevent the adoption of adaptivity in MOOC platforms by having the adaptation performed on the end-user's machine as well (within the browser). Authoring of adaptive applications within the educational domain with the system proposed was tried out with first year students from the Design-Based Learning Hypermedia course at the Eindhoven University of Technology (TU/e) to gather feedback on the problems they faced with the platform

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    Writing MOT, Reading AHA! Converting between an authoring and a delivery system for adaptive educational hypermedia

    Get PDF
    This paper reports about the recent advances towards establishing a common platform for adaptive educational hypermedia (AEH) authoring. We present the conversion from MOT, a dedicated authoring system, to AHA! used in this context as delivery system for AEH. Moreover, we describe two new representation languages that emerged in the process: a common format for defining the static material, CAF, and an extended adaptation language for the description of the dynamic behaviour, LAG. Finally, some evaluations are shown and conclusions are drawn
    • …
    corecore